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Ex-1: Quantified statements.

(a) ∃x(C(x) ∧ D(x) ∧ F(x))

(b) ∀x(C(x) ∨ D(x) ∨ F(x))

(c) ∃x(C(x) ∧ F(x) ∧ ¬D(x))

(d) ¬∃x(C(x) ∧ D(x) ∧ F(x)) ≡ ∀x(¬C(x) ∨ ¬D(x) ∨ ¬F(x))

(e) ∃xC(x) ∧ ∃yD(y) ∧ ∃zF(z) ≡ ∃x∃y∃z(C(x) ∧ D(y) ∧ F(z))

We can also write the proposition as:
∃xC(x) ∧ ∃xD(x) ∧ ∃xF(x). Note that x can refer to a different
person in each term.
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Ex-2: Quantified statements.

(a) ∀xF(x,Nancie)

(b) ∀yF(Peter, y)

(c) ∀x∃yF(x, y)

(d) ¬∃x∀yF(x, y) ≡ ∀x∃y¬F(x, y)

(e) ∀y∃xF(x, y)

(f)
¬∃x(F(x,Ouny) ∧ F(x, Leyla)) ≡ ∀x¬(F(x,Ouny) ∧ F(x, Leyla))

≡ ∀x(¬F(x,Ouny) ∨ ¬F(x, Leyla))
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Ex-2: Quantified statements.

(g) ∃y1∃y2(y1 ̸= y2 ∧ F(Essil, y1) ∧ F(Essil, y2) ∧ ∀y(F(Essil, y) →
(y = y1 ∨ y = y2)))

(h) ¬∃yF(Ehlena, y) ≡ ∀y¬F(Ehlena, y)

(i) ∃!y∀xF(x, y) ≡ ∃y(∀xF(x, y) ∧ ∀z(∀wF(w, z) → y = z))

(j) ∀x¬F(x, x)

(k) ∃x∃y(x ̸= y ∧ F(x, y) ∧ ∀z(F(x, z) → z = y))
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Ex-3: Definition of a limit

· We have: limx→a f(x) = L ⇐⇒

∀ε > 0 ∃δ > 0 ∀x |x − a| < δ → |f(x)− L| < ε

· If we name the proposition on the right P, then limx→a f(x) ̸= L
can be interpreted as ¬P.
· Thus we have ¬P as:

¬P ≡ ¬(∀ε > 0 ∃δ > 0 ∀x |x − a| < δ → |f(x)− L| < ε)

≡ ∃ε > 0 ∀δ > 0 ∃x (|x − a| < δ ∧ |f(x)− L| ≥ ε)

· Note that the restricted domains (e.g., ε > 0 or δ > 0) on which
the quantifiers apply are not changed when the negation is done.
However, we negate the conditional statement being quantified.
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Ex-4: Rules of Inference

Consider the following statements:
p : It’s sunny this afternoon.
q : It’s colder than yesterday.
r : We will go swimming.
s : We will take a canoe trip.
t : We will be home by sunset.
Premises:
1. ¬p ∧ q
2. r → p
3. ¬r → s
4. s → t
Conclusion: t
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Ex-4: Rules of Inference

We construct our argument with the premises and rules of
inference to arrive at the conclusion.

Step Reason
¬r → s Premise 3
s → t Premise 4
¬r → t Transitivity/Hypothetical syllogism
¬p ∧ q Premise 1
¬p Specialization/Simplification

r → p Premise 2
¬r Modus Tollens
t Modus Ponens (see ¬r → t above)
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Ex-5: Mathematical Induction

Let P(n) be the statement: ∀n ∈ N, n(n + 1)(n + 2) is divisible by
6.

Basis Step: n = 0
P(0): 0(0 + 1)(0 + 2) = 0, which is divisible by 6. So P(0) is true.

Inductive Step: We assume P(k) is true for an arbitrary k ≥ 0,
which is our inductive hypothesis (I.H.):
P(k): k(k + 1)(k + 2) is divisible by 6.
Assuming the I.H., we show that P(k + 1) is true.

· NB: The truth of P(k + 1) must follow from the I.H., i.e., from
the truth of P(k). You do not show that P(k + 1) is true on its
own.
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Ex-5: Mathematical Induction

P(k + 1) : (k + 1)(k + 2)(k + 3) = k(k + 1)(k + 2) + 3(k + 1)(k + 2)

I.H
= 6M + 3(k + 1)(k + 2), M ∈ Z
(∗)
= 6M + 3 · 2 · N, N ∈ Z
= 6M + 6N
= 6(M + N)

For the equality (∗), we have used that (k + 1)(k + 2) is even, so
(k + 1)(k + 2) = 2N for some N ∈ Z.
6(M + N) is divisible by 6. Therefore P(k) → P(k + 1), and by the
principle of mathematical induction, ∀n ∈ N, P(n) holds.
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Ex-6: Proof by Contradiction

· To prove a proposition P by contradiction, we show that
¬P → F. In other words, by assuming P is false, we arrive at
a contradiction.
· This indirectly proves P because P ≡ (¬P → F).
· This proof method also applies if P is a conditional state-
ments/proposition of the form A → B.

· So to prove by contradiction that: ∀a ∈ Z, a2 even → a even, we
show that the hypothesis ¬(∀a ∈ Z, a2 even → a even) leads to a
contradiction.
· ¬(∀a ∈ Z, a2 even → a even) ≡ ∃a ∈ Z | (a2 even ∧ a odd).

a odd =⇒ ∃c ∈ Z such that a = 2c + 1

=⇒ a2 = 4c2 + 4c + 1 = 2(2c2 + 2c) + 1 is odd

· We have both a2 even and a2 odd, hence a contradiction. So Pis true.
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Ex-7: Proof by Contraposition.

· To prove that P → Q by contraposition, we show that
¬Q → ¬P. This proof method is valid because a conditional
statement is logically equivalent to its contrapositive.

Consider (for some arbitrary, but fixed a, b, and n) the following
statements: p : n = ab, q : a ≤

√
n, and r : b ≤

√
n.

We want to prove that: p → (q ∨ r).
By contraposition, it suffices to show that ¬(q ∨ r) → ¬p.

¬(q ∨ r) ≡ ¬q ∧ ¬r
= (a >

√
n) ∧ (b >

√
n)

=⇒ ab >
√

n
√

n = n
=⇒ ab ̸= n

i.e ¬(q ∨ r) → ¬p.
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Ex-8: Mathematical Induction
Let P(n) be the statement:

∀n ≥ 1, ∀(p1, . . . , pn) ∈ {0, 1}n : ¬(p1∧ . . .∧pn) = ¬p1∨ . . .∨¬pn

Basis Step: For n = 1, ¬p1 = ¬p1, so P(1) is true (there is
nothing to do).
For n = 2, ¬(p1 ∧ p2) = ¬p1 ∨ ¬p2 (shown using truth tables). So
also P(2) is true.

Inductive Step: We assume P(k) is true for an arbitrary k ≥ 2
(Inductive Hypothesis):

P(k) : ∀(p1, . . . , pk) ∈ {0, 1}k : ¬(p1 ∧ . . . ∧ pk) = ¬p1 ∨ . . . ∨ ¬pk

and show that if P(k) is true, then P(k + 1) is true.
P(k + 1) is the following statement:

∀(p1, . . . , pk+1) ∈ {0, 1}k+1 :

¬(p1 ∧ . . . ∧ pk ∧ pk+1) = ¬p1 ∨ . . . ∨ ¬pk ∨ ¬pk+1
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Ex-8: Mathematical Induction

¬(p1 ∧ . . . ∧ pk ∧ pk+1) = ¬((p1 ∧ p2 ∧ . . . ∧ pk) ∧ pk+1)

= ¬(p1 ∧ . . . ∧ pk) ∨ ¬pk+1 case n = 2

I.H
= (¬p1 ∨ . . . ∨ ¬pk) ∨ ¬pk+1

= ¬p1 ∨ . . . ∨ ¬pk ∨ ¬pk+1

Therefore P(k) → P(k + 1) and by the principle of mathematical
induction, ∀n ∈ N, P(n) holds.

TODO at home: Similar proof for the second law.
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Ex-9: Proving conjectures by mathematical induction.
By computing the sum for small values of n, we can conjecture
that the following statement P(n) holds for all n:

P(n) :
n∑

i=1

1

2i =
2n − 1

2n

Let us prove our conjecture by mathematical induction.

Basis Step: n = 1

P(1): 1
21

= 21−1
21

= 1
2 . So P(1) is true.

Inductive Step: We assume P(k) is true for an arbitrary k ≥ 1
(I.H.)

P(k) :
∑k

i=1
1
2i =

2k−1
2k

Assuming the I.H., we show that P(k + 1) is true.
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Ex-9: Proving conjectures by mathematical induction.

P(k + 1) :

k+1∑
i=1

1

2i =
k∑

i=1

1

2i +
1

2k+1

I.H
=

2k − 1

2k +
1

2k+1

=
2(2k − 1) + 1

2k+1

=
2 · 2k − 2 + 1

2

=
2k+1 − 1

2k+1

Therefore P(k) → P(k + 1), and by the principle of mathematical
induction, ∀n ∈ N, P(n) holds.
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End

For more exercises and notes, see Rosen 7th Edition
Chap. 1.4-1.8 and Chap. 5.1.
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