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Ex-1: Quantified statements.

(2) Ix(C(x) A D(x) A F(x))
(b) ¥x(C(x) V D(x) V F(x))

(c) Ix(C(x) A F(x) A —D(x))

(d) —3x(C(x) A D(x) A F(x)) = ¥x(~C(x) V =D(x) V ~F(x))
(e) IxC(x) A IyD(y) A 3zF(z) = Ix3y3z(C(x) A D(y) A F(2))
We can also write the proposition as:

IxC(x) A IxD(x) A 3xF(x). Note that x can refer to a different
person in each term.
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Ex-2: Quantified statements.

(a) VxF(x, Nancie)

(b) VyF(Peter, y)

(c) VxIyF(x,y)

(d) =3IxVyF(x, y) = VxJy—F(x, y)
(e) Vy3xF(x, y)

(f)

—3x(F(x, Ouny) A F(x, Leyla)) = Vx—(F(x, Ouny) \ F(x, Leyla))
= Vx(—=F(x, Ouny) V = F(x, Leyla))
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Ex-2: Quantified statements.

(8) Iv13ya(y1 # y2 A F(Essil, y1) A F(Essil, y2) A Vy(F(Essil, y) —
(y=x1Vy=y)))

(h) =3yF(Ehlena, y) = Vy—~F(Ehlena, y)
(i) IWxF(x,y) = Iy(VxF(x, y) ANVz(NwF(w, z) — y = z))
(j) Vx=F(x, x)

(k) Ix3y(x # y A F(x,y) A\Vz(F(x,2) — z=y))
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Ex-3: Definition of a limit

- We have: lim,_,,f(x) = L <~
Ve>030>0Vx|x—al<d—|fix)—Ll<e

- If we name the proposition on the right P, then lim,_,, f{x) # L
can be interpreted as —P.
- Thus we have =P as:

P=-(Ve>030>0Vx|x—al<d—|f(x) —L|<e)
=Je>0V0>03x(|]x—al <IA|x)—L| >e¢)

- Note that the restricted domains (e.g., € > 0 or § > 0) on which
the quantifiers apply are not changed when the negation is done.
However, we negate the conditional statement being quantified.

Peterson Yuhala - Discrete Mathematics and Applications - Fall 2025 - Problem Session 3



Ex-4: Rules of Inference

Consider the following statements:
p : It's sunny this afternoon.

q : It's colder than yesterday.

r: We will go swimming.

: We will take a canoe trip.

: We will be home by sunset.

~ 0

Premises:
1. -pAg
2. r—=p
3. 7 r—s
4. s—t

Conclusion: t
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Ex-4: Rules of Inference

We construct our argument with the premises and rules of
inference to arrive at the conclusion.

Step Reason
-r—s Premise 3
s—t Premise 4
—r — t | Transitivity/Hypothetical syllogism
pAgq Premise 1
-p Specialization /Simplification
r—p Premise 2
—-r Modus Tollens
t Modus Ponens (see —r — t above)
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Ex-5: Mathematical Induction

Let P(n) be the statement: Vn € N, n(n+ 1)(n+ 2) is divisible by
6.

Basis Step: n=10
P(0): 0(0+ 1)(0 + 2) = 0, which is divisible by 6. So P(0) is true.

Inductive Step: We assume P(k) is true for an arbitrary k > 0,
which is our inductive hypothesis (I.H.):
P(k): k(k+ 1)(k+ 2) is divisible by 6.

Assuming the |.H., we show that P(k+ 1) is true.

- NB: The truth of P(k+ 1) must follow from the I.H., i.e., from
the truth of P(k). You do not show that P(k+ 1) is true on its
own.

Peterson Yuhala - Discrete Mathematics and Applications - Fall 2025 - Problem Session 3



Ex-5: Mathematical Induction

P(k+1): (k+ 1)(k+2)(k+3) = k(k+ 1)(k+2) + 3(k+ 1)(k+2)
LM+ 3(k+1)(k+2), MeZ

Y eM+3.2.N, NezZ

=6M+ 6N

=6(M+ N)
For the equality (%), we have used that (k+ 1)(k+ 2) is even, so
(k+1)(k+2) = 2N for some N € Z.

6(M + N) is divisible by 6. Therefore P(k) — P(k+ 1), and by the
principle of mathematical induction, ¥n € N, P(n) holds.
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Ex-6: Proof by Contradiction

- To prove a proposition P by contradiction, we show that
=P — F. In other words, by assuming P is false, we arrive at
a contradiction.

- This indirectly proves P because P= (=P — F).

- This proof method also applies if P is a conditional state-
ments/proposition of the form A — B.

- So to prove by contradiction that: Va € Z, a* even — a even, we
show that the hypothesis —(Va € Z, a* even — a even) leads to a
contradiction.

- —(Va€Z, a®> even — aeven) = Jac Z | (a* even A aodd).
aodd = Jc € Z such that a=2c+1
— 2> =4 +4c+1=2(2¢ +2¢) + 1 is odd

. }C/Ve have both a® even and a® odd, hence a contradiction. So P
is true.
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Ex-7: Proof by Contraposition.

- To prove that P — @ by contraposition, we show that
—=Q — —P. This proof method is valid because a conditional
statement is logically equivalent to its contrapositive.

Consider (for some arbitrary, but fixed a, b, and n) the following
statements: p: n=ab, q: a<+/n,and r: b</n.

We want to prove that: p— (qV r).

By contraposition, it suffices to show that —(qV r) — —p.

—(qVr)=-gA-r
(2> VA) A (b> Vi)
= ab>+/nv/n=n
= ab#n

i.e =(qVvr) — —p.
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Ex-8: Mathematical Induction
Let P(n) be the statement:
Vn>1, V(p1,....pn) € {0,1}" : 2(p1 A Apn) = =p1 V...V py

Basis Step: For n =1, =p; = —p1, so P(1) is true (there is
nothing to do).

For n =2, =(p1 A p2) = —p1 V —p2 (shown using truth tables). So
also P(2) is true.

Inductive Step: We assume P(k) is true for an arbitrary k > 2
(Inductive Hypothesis):

P(K) :¥(p1, .- p) € {0,134 =(p1 AL Apk) = =p1 V...V —py

and show that if P(k) is true, then P(k+ 1) is true.
P(k+ 1) is the following statement:

\V/(pla s 7Pk+1) € {07 1}k+1 :
A(PL A APk A PRi1) =PV LV Pk V Pk
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Ex-8: Mathematical Induction

“(pr A APk A Pr1) = ((Pr A P2 A A Pk) A Prr1)

—

H
= (2p1 V...V k) V oprtt

=p1 V...V prV Pry1

Therefore P(k) — P(k+ 1) and by the principle of mathematical
induction, ¥n € N, P(n) holds.

TODO at home: Similar proof for the second law.
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Ex-9: Proving conjectures by mathematical induction.

By computing the sum for small values of n, we can conjecture
that the following statement P(n) holds for all n:

n
1 2" —1
P(n) : 5 = on
i=1

Let us prove our conjecture by mathematical induction.

Basis Step: n=1
P(1): QL = 2;1 = 1. So P(1) is true.

Inductive Step: We assume P(k) is true for an arbitrary k > 1

(LH.)

k k_
P(k) : Zi:l % = 22k1

Assuming the |.H., we show that P(k+ 1) is true.
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Ex-9: Proving conjectures by mathematical induction.

k+1 k 1 1
Ph+1): D 5= ot o
i=1 i=1
2k 1 1
LH I
2k 2k+1
202k 1)+ 1
= 9k+1
2.2k—241
N 2
2k+1_1
= 9k+1

Therefore P(k) — P(k+ 1), and by the principle of mathematical
induction, ¥n € N, P(n) holds.

Peterson Yuhala - Discrete Mathematics and Applications - Fall 2025 - Problem Session 3



End

For more exercises and notes, see Rosen 7th Edition
Chap. 1.4-1.8 and Chap. 5.1.
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