
Research Statement

Peterson Yuhala
University of Neuchâtel, Switzerland

January 15, 2026

My primary research interests are in systems security and data privacy, particularly on securing

data in use. The growing popularity of cloud-based computing and data-driven technologies

like deep learning, genome analysis, graph analytics, etc. requires collecting and processing

potentially sensitive data. This creates an urgent need for robust data security and privacy

mechanisms.

State-of-the-art solutions such as hardware-based trusted execution environments (TEEs) and

software-based cryptographic primitives like fully homomorphic encryption (FHE) provide ways

to mitigate these security and privacy issues. Nevertheless, these techniques often involve

trade-offs between security, usability, and performance. The central theme driving my research

is finding practical middle grounds: designing privacy-preserving systems that provide strong

security guarantees while remaining efficient and user-friendly.

Dissertation Research

The focus of my PhD thesis [22] was on hardware-based security with trusted execution en-

vironments (TEEs), with an emphasis on designing and building tools to 1) enhance security

via trusted computing base (TCB) reduction, and 2) improve performance in TEE-based appli-

cations.

TCB reduction. The complexity of state-of-the-art TEE implementations, e.g., Intel SGX [3]

for process-level isolation, has led to the adoption of tools like library operating systems [14,

13], which allow unmodified legacy applications to be run inside TEEs. While this approach

enhances the usability of TEEs (especially by non-experts), it increases the attack surface and

bloats the trusted computing base. Moreover, prior research [8] has shown that larger code

bases are more prone to bugs and security vulnerabilities.

As a result, reducing the TCB in TEE-based applications is crucial for achieving strong security:

this can be done through privilege separation [1], a security principle which divides a program

into parts with different levels of privilege or access rights. In this context, my first PhD re-

search work [24] proposed an approach to partition Java programs for Intel SGX enclaves.

The proposed approach relies on code annotations and bytecode transformations to partition

Java classes into trusted and untrusted components. These components are then ahead-of-

1

https://yuhala.github.io/assets/pdf/thesis-peterson-yuhala.pdf


time compiled into binaries that run in and out of an enclave, while maintaining sufficient

interaction to preserve the functional goals of the original program.

The second research [23] work extended the concept of code partitioning to a multi-language

context. It leverages GraalVM’s Truffle framework [25] to provide abstract syntax tree (AST)

nodes that encapsulate sensitive data in polyglot programs. The resulting AST is then analyzed

via dynamic taint analysis [5], and the secure nodes are used to deduce sensitive portions of

the program to be isolated inside an enclave.

These tools also tackle TEE usability challenges for high-level languages (e.g., Java, JavaScript,

Python) for which popular TEE technologies like Intel SGX provide little to no support. These

research works were done in collaboration with Oracle Labs Zürich.

TEE performance improvement. While TEEs offer strong isolation guarantees, they often

impose significant overhead, e.g., through costly context switches. The subsequent research

conducted focused on tackling these performance overheads in TEEs. First, I explored how

emerging hardware technologies such as persistent memory (PM) can be used to mitigate I/O

overhead for applications executing in secure enclaves [20]. Persistent memory has both stor-

age and memory characteristics, and provides memory access semantics that can be leveraged

by TEEs to eschew costly CPU context switches required to manipulate data in the under-

lying storage device. I leveraged these properties of PM to provide efficient fault tolerance

guarantees for in-enclave data structures. I further tackled the TEE performance problem by

leveraging multi-threading in enclaves [21]: using worker threads in and out of enclaves that

use shared memory to prevent costly context switches, i.e., switchless calls. This approach in-

volves a (more) dynamic technique for tuning worker threads in Intel SGX’s switchless routine

library so as to obviate the performance penalty associated with poor static configurations.

Ongoing Research: secure processing-in-memory

Several recent studies [9, 10] have shown that traditional processor-centric computing systems

are inadequate for today’s data-intensive applications. Workloads such as machine learning,

genome analytics, graph processing, etc. are often memory-bound: the limited CPU-memory

bandwidth introduces a significant performance bottleneck (commonly known as the von Neu-

mann bottleneck) in these applications. This has led to the emergence of processing-in-memory

(PIM), a memory-centric computing paradigm which augments memory with compute capabil-

ities. For example, a recently commercialized PIM hardware architecture, UPMEM PIM [15],

associates a low-power processor called a DRAM processing unit (DPU) with every 64 MB of

DRAM. This design allows extensive parallelism and enables computing resources to scale with

memory size.

Despite these advantages, current PIM hardware lacks mechanisms to protect data processed

in memory from unauthorized access and modification. As current TEE solutions are processor-

centric, they cannot be used as a drop-in replacement for PIM hardware.

My current research aims to address this security problem in memory-centric computing de-

signs. In that light, we have been investigating the adoption of purely cryptographic solutions

2



like fully homomorphic encryption (FHE), which allow arbitrary computation over encrypted

data. The advantage of such cryptographic approaches is that they are entirely software-based

and thus can be readily deployed on current PIM hardware. This creates a symbiotic relation-

ship between PIM and FHE, where FHE allows privacy-preserving computation in PIM-based

applications, while PIM accelerates the computationally heavy FHE primitives. Our recent

work [11] explored the feasibility of current PIM hardware to accelerate several underlying

algorithms in FHE in popular FHE libraries.

Still in this direction, we have equally been investigating PIM-based acceleration in privacy-

preserving contexts that do not rely on complex cryptography like FHE. A notable example

is information-theoretic private information retrieval (PIR), which allows a client to query a

database on untrusted servers obliviously, i.e., without exposing the exact query. PIR is inher-

ently memory-bound since the entire database always needs to be accessed to prevent query-

specific data access patterns. We have designed a PIM-based PIR solution which allows in-place

processing of large PIR databases, enabling extensive acceleration of the primary bottleneck

in PIR, i.e., bit-wise XOR operations on database items.

Future Work

My future research prospects build upon my prior work in systems security and privacy, and

span several key areas: first, hardware-enforced security for PIM architectures, and extending

previous work on privilege separation to confidential virtual machines (CVMs), which are

becoming the de facto confidential computing solution.

Hardware-enforced security in PIM. Notwithstanding the advantages of purely software cryp-

tographic solutions like FHE, they are prohibitively expensive, especially when compared to

hardware-based security primitives like TEEs. In that light, I plan to investigate the feasibility

of extending existing (processor-centric) hardware security mechanisms like TEEs to improve

the security posture of PIM-based applications. Leveraging these existing solutions promotes

technology reuse and support for workloads running on existing hardware.

Nevertheless, memory-centric computing introduces threat models that do not necessarily

align with current processor-centric TEEs. As such, the ultimate aim in this direction is to

design novel TEE architectures tailored to PIM computing models, but inspired upon the large

body of prior work done on processor-centric hardware security designs [16, 17]. Further, the

design of some PIM architectures helps mitigate security issues common in processor-centric

architectures. For example, in UPMEM’s PIM architecture, DPUs are not shared among pro-

cesses. This enhances spatial isolation (e.g., in multi-tenant scenarios) and limits the efficacy

of side-channel vulnerabilities [7, 18] and micro-architectural attacks [4, 2] common in cur-

rent processor-centric TEE architectures. These security-enabling features of PIM can serve as

strong foundations for building specialized, secure-by-design TEE architectures.

TCB reduction in confidential VMs. As previously discussed, the dilemma surrounding se-

curity, usability, and performance has remained a major research challenge in the context of

3



data security and privacy. This problem is equally present in confidential VMs, which aim to

ease deployment of TEE-based applications, but in doing so, result in a significantly larger TCB

as the entire guest operating system is included in the TEE. To address this issue, I envision

adopting a low-TCB architecture for confidential VMs by leveraging robust security-first OS de-

signs like microkernels. Unlike monolithic kernel designs that bundle all kernel functionality,

microkernels split the kernel into loosely coupled modules which perform specific tasks. This

approach promotes better isolation, security, modularity and minimalism. The latter facilitates

techniques like formal verification which provide mathematical proof of the trustworthiness

of software, e.g., in seL4, making such microkernels central in ensuring OS security. Com-

partmentalization techniques [12] can then be used to further ensure isolation of sensitive

information from non-core modules and co-located applications. Recent works like [6] have

explored a similar direction by adopting unikernel-based CVMs.

Still in the direction of TCB reduction in CVMs, service-oriented partitioning can be introduced

to convert critical functions into microservices that run in a CVM, while the non-critical func-

tions remain in an unprotected VM. This idea can be used alongside solutions like [19] to

achieve fine-grained security/isolation for data processing pipelines in confidential VMs.

Open source repositories

In line with open science principles, I have open-sourced the code for most of my research

projects. This promotes reproducibility and provides a foundation for future research. The

following GitHub repositories correspond to some of my key publications:

1. Partitioning Java applications for TEEs

2. Multi-language program partitioning for TEEs using GraalVM Truffle

3. Improving I/O performance in TEEs with persistent memory (applied to ML)

4. Reducing enclave context switches with multi-threading (dynamic switchless calls)

References

[1] David Brumley and Dawn Song. Privtrans: automatically partitioning programs for priv-

ilege separation. In Proceedings of the 13th Conference on USENIX Security Symposium -

Volume 13, SSYM’04, page 5, USA, 2004. USENIX Association.

[2] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H. Lai.

Sgxpectre: Stealing intel secrets from sgx enclaves via speculative execution. In 2019

IEEE European Symposium on Security and Privacy (EuroSP), pages 142–157, 2019.

[3] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint Arch.,

2016:86, 2016.

4

https://github.com/Yuhala/montsalvat
https://gitlab.com/Yuhala/generic-tools/-/tree/main/polytaint?ref_type=heads
https://github.com/Yuhala/plinius
https://gitlab.com/Yuhala/zc-switchless


[4] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre attacks: Exploit-

ing speculative execution. Communications of the ACM, 63(7):93–101, 2020.

[5] Jacob Kreindl, Daniele Bonetta, and Hanspeter Mössenböck. Towards efficient, multi-

language dynamic taint analysis. MPLR 2019, pages 85–94, New York, NY, USA, 2019.

Association for Computing Machinery.

[6] Dmitrii Kuvaiskii, Dimitrios Stavrakakis, Kailun Qin, Cedric Xing, Pramod Bhatotia, and

Mona Vij. Gramine-tdx: A lightweight os kernel for confidential vms. In Proceedings of

the 2024 on ACM SIGSAC Conference on Computer and Communications Security, CCS ’24,

page 45984612, New York, NY, USA, 2024. Association for Computing Machinery.

[7] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level cache side-

channel attacks are practical. In 2015 IEEE Symposium on Security and Privacy, pages

605–622, 2015.

[8] Subhas C Misra and Virendra C Bhavsar. Relationships between selected software mea-

sures and latent bug-density: Guidelines for improving quality. In Computational Science

and Its ApplicationsICCSA 2003: International Conference Montreal, Canada, May 18–21,

2003 Proceedings, Part I 3, pages 724–732. Springer, 2003.

[9] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. Process-

ing data where it makes sense: Enabling in-memory computation. Microprocessors and

Microsystems, 67:28–41, 2019.

[10] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. A mod-

ern primer on processing in memory. In Emerging computing: from devices to systems:

looking beyond Moore and Von Neumann, pages 171–243. Springer, 2022.

[11] Mpoki Mwaisela, Joel Hari, Peterson Yuhala, Jämes Ménétrey, Pascal Felber, and Valerio

Schiavoni. Evaluating the potential of in-memory processing to accelerate homomor-

phic encryption: Practical experience report. In 2024 43rd International Symposium on

Reliable Distributed Systems (SRDS), pages 92–103, 2024.

[12] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. Cubicleos: a library os with soft-

ware componentisation for practical isolation. In Proceedings of the 26th ACM Interna-

tional Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS ’21, page 546558, New York, NY, USA, 2021. Association for Computing

Machinery.

[13] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin Xia, and

Shoumeng Yan. Occlum: Secure and efficient multitasking inside a single enclave of in-

tel SGX. In James R. Larus, Luis Ceze, and Karin Strauss, editors, ASPLOS ’20: Architec-

tural Support for Programming Languages and Operating Systems, Lausanne, Switzerland,

March 16-20, 2020, pages 955–970. ACM, 2020.

5



[14] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A practical library OS

for unmodified applications on SGX. In Dilma Da Silva and Bryan Ford, editors, 2017

USENIX Annual Technical Conference (USENIX ATC 2017), pages 645–658, Santa Clara,

CA, USA, 2017.

[15] UPMEM. UPMEM processing in-memory (PIM): ultra-efficient acceleration for data-

intensive applications. White paper, August 2022.

[16] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted execution environ-

ments on GPUs. In 13th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 18), pages 681–696, Carlsbad, CA, October 2018. USENIX Association.

[17] Xiaolong Wu, Dave Jing Tian, and Chung Hwan Kim. Building gpu tees using cpu secure

enclaves with gevisor. In Proceedings of the 2023 ACM Symposium on Cloud Computing,

SoCC ’23, page 249264, New York, NY, USA, 2023. Association for Computing Machinery.

[18] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deter-

ministic side channels for untrusted operating systems. In 2015 IEEE Symposium on

Security and Privacy, pages 640–656, 2015.

[19] Yuqin Yan, Pritish Mishra, Wei Huang, Aastha Mehta, Oana Balmau, and David Lie.

Stream processing with adaptive edge-enhanced confidential computing. In Proceedings

of the 7th International Workshop on Edge Systems, Analytics and Networking, EdgeSys

’24, page 3742, New York, NY, USA, 2024. Association for Computing Machinery.

[20] P. Yuhala, P. Felber, V. Schiavoni, and A. Tchana. Plinius: Secure and persistent machine

learning model training. In 2021 51st Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), pages 52–62, Los Alamitos, CA, USA, jun 2021.

IEEE Computer Society.

[21] P. Yuhala, M. Paper, T. Zerbib, P. Felber, V. Schiavoni, and A. Tchana. Sgx switchless calls

made configless. In 2023 53rd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pages 229–238, Los Alamitos, CA, USA, jun 2023. IEEE

Computer Society.

[22] Peterson Yuhala. Enhancing Security and Performance in Trusted Execution Environments.

PhD thesis, University of Neuchâtel, Switzerland, 2024.

[23] Peterson Yuhala, Pascal Felber, Hugo Guiroux, Jean-Pierre Lozi, Alain Tchana, Valerio

Schiavoni, and Gaël Thomas. Secv: Secure code partitioning via multi-language secure

values. In Proceedings of the 24th International Middleware Conference on ZZZ, Middle-

ware ’23, pages 207–219, New York, NY, USA, 2023. Association for Computing Machin-

ery.

[24] Peterson Yuhala, Jämes Ménétrey, Pascal Felber, Valerio Schiavoni, Alain Tchana, Gaël

Thomas, Hugo Guiroux, and Jean-Pierre Lozi. Montsalvat: Intel SGX Shielding for

6



GraalVM Native Images. In Proceedings of the 22nd International Middleware Conference,

Middleware ’21, pages 352–364, New York, NY, USA, 2021. Association for Computing

Machinery.

[25] M. ipek, B. Mihaljevi, and A. Radovan. Exploring aspects of polyglot high-performance

virtual machine graalvm. In 2019 42nd International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), pages 1671–1676,

2019.

7


